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The numexous forces recently presupposed resulted in substantial progress in the under- 
standing of the fundamental concepts of the mechanics of a continuous medium in application 

STABILITY OF INTERPHASE BOUNDARIES IN SOLID ELASTIC MEDIA* 
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appraoch is developed for the stability analysis of the equilibrium 
heterogeneous thermodynamic systems with phase transformation surfaces 
the first kind, based on investigations of the non-negative-definiteness 
the second energy variation, A derivation is given of explicit second- I 

variation formulas of the corresponding functionafs for cases of systems 
with solid single-component phases under coherent transformations (of 
martensitic type) and transitions with slip. The general procedure is 
illustrated by the example of a stability investigation for transitions 
with slip in the approximation of an asymptotic of low "intrinsic" strain 
in an isothermal system with isotropic elastic phases. 

to the problem of phase transformations in solids. The explicit perception of the inconsistency 
of the concept of a scalar chemical potential of a solid raised the question of finding correct 
phase equilibrium conditions for transformations in a solid substance, which, in turn resulted 
in a more detailed and clear classification of phase transitions of the first kind in a solid 
and in a development of representations about different chemical potential tensors. Meanwhile 
sequential specific results referring to equilibrium stability do not exist for different 
transitions of the first kind in heterogeneous systems. It is natural to start the study of 
the equilibrium stability ofheterogeneoussystems with phase transition surfaces with the 
static underlying the Gibbsapproach /l/ associated with computations of the second variations 
of the appropriate thermodynamic functionals in the neighbourhood of the equilibrium state. 
The variation concept should be consistent internally with the physical nature of the inter- 
facial boundaries under consideration. 

Below we describe the results of an investigation of the necessary conditionsforstability 
(the sufficient conditions for instability) for cases of coherent phase transformations and 
phase transitions with slip; some of these results were given in 12, 3/. The stability 
conditions obtained are conditions of non-negative-definiteness of the properly understood 
second variations of the corresponding energy functions (in connection with the second variation 
criterion in continuum problems, see /4/). A brief derivation of the second variation of the 
energy functional is given initially in the neighbourhood of the equilibrium state in a set 
of allowable configurations dictated by the physical nature of the transformation being studied. 
Furthermore, the question of non-negative-definiteness of the second variation is reduced to 
confirmation of the non-negativity of spectral values of a linear homogeneous system of partial 
differential equations with appropriate boundary conditions. Then the spectral problem for 
the case of the asymptotic form of a small "natural" deformation of the transformation is 
reduced, in this approximation , to an explicit stability analysis for the simplest phase 
symmetry results in completely clear results. This is illustrated by an explicit stability 
analysis of the interphase boundary in an isothermal system with isotropic phases during 
transitions with slip: here an equation is obtained for the critical deformations (the neutral 
equilibrium condition) which are of the order of the natural deformation of the transformation. 

1. Equilibrium and stability conditions of heterogeneous systems with co- 
herent transformation surfaces. A complete thermodynamic analysis of the equilibrium 
and stability of heat-insulated systems on the basis of the Gibbs principles /l/ in the case 
of simple elastic phases with no external force fields present is reduced to an investigation 
of the minimum of the total internal energy E for a fixed totalentropy S 

When investigating coherent transformations, the Lagrangian description of a continuous 
medium is used everywhere in this paper: Uk(x)are the components of the displacement vector 
at a point with the Lagrangian coordinates z' on the basis of the initial configuration; the 
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Latin subscript after the vertical bar denotes covariant differentiation on the basis of the 
metric initial configuration tensor s,~,x", used also for "juggling" the spatial Lagrangian 
indices: m is the mass density in the initial homogeneous configuration (common to both phases); 
e&l0 11) is the dependence of the specific (per unit mass) internal energy of simple elastic 
phases on the displacement gradients ~11 and the specific entropy 11: Q is the domain occupied 

by the system in the initial configuration, and s' is the symbol ofthesum of the integrals 
over the smooth parts of the system. 

In the case of coherent transformations the displacement fieldonthe interphase boundary 

Y is continuous by definition: [u'l = O([U] = a, - a._); by virtue of this, the following com- 
patibility relationships for discontinufties of the derivatives 

(1.3) 

should be satisfied for a one-parameter family of allowable displacement fields u'(x,r) and 
positions .rL (E,T) of the discontinuous surface. 

Here $," are coordinates on the interphase boundary Y; the Greek subscript after the 
vertical bar denotes covariant differentiation on the basis of a metric surface-prototype 
tensor of the actual boundary in the initial configuration ("juggling" by the surface indices 
is realized by using this same tensor when examining coherent transformations); b,, = baa (Et 

z)x;?x;! (hap is the tensor of coefficients of the second quadratic form of the surface-prototype); 
C is the velocity of this surface in the direction of the unit normal n, induced by the change 
in the variation parameter T; S/&r is the symbol of covariant differentiation with respect 
to a parameter on a moving surface , understood exactly as in /5/ (the appropriate definition 
for certain kinds of tensors differs substantially from those proposed earlier /6, 7,'). The 
compatibility relationships for the dfscontinuities of the derivatives in the Weingarten, 
Appel, Levi-Civita, and Hadamard researches were improved considerably by Thomas to whom 
formulas (1.2) belong (see /6/, say). 

Varying the functional I = E + AS (A is the undetermined Lagrange multiplier), following 
/8/, we obtain 

(here and henceforth, integrals over the outer boundary of the system are omitted). 
Using the compatibility relationships for the discontinuities of the first order deriva- 

tives on a coherent boundary (1.2) and separating out the independent variations, we arrive 
at the following equilibrium conditions on the basis of (1.3): 

,+ = 6 = _A, pi> = 0 within the phase 

[pj'] nj = 0, [p"j] nln, = 0 on the interphase boundary 
(1.4) 

p-j = (e - eq)& - m-lpjk (8; + qf) 

where p'" = me" is the Piola-Kirchhoff stress tensor, and pij is 
potential tensor /9/. Here and henceforth, the following notation 
of the thermodynamic functions with respect to their arguments: 

the non-symmetric chemical 
is used for the derivatives 

Differentiating (1.3) with respect to z and using the equilibrium equation (1.4), we 
arrive at the following formula for the second variation of I at ?=o /2/: 

6’1 = ~‘G?CWZ (d’k6ai)jak,l + 2eq’jUiljb + e,qb2) + (1.5) 
0 
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S d”f (CX;4C [e”jtZil,] + CaXp [e”ju,lla] nr - [eijai] syc,,) 
V 

J@)- au’jy) , b@).Ap. 

Here d, b are the displacement and entropy variations, respectively. In deriving (1.5) 
it is necessary to use the compatibility relationships (1.2) and the properties of the 6/&- 
derivative, particularly the relationships 

According to the Gibbs principle, for the stability of the equilibrium of thermally and 
mechanically insulated systems with coherent transformation surfaces it is necessarytohave 
the non-negativity of the functional ii21 in displacement field variations of the particles 
ai, the boundary c and the entropy b satisfying the relationships 

]a'] =- c[ui,,] nj, i’domb + Sdymc [q] =0 
0 V 

(1.6) 

the former of which is a consequence of the coherence condition and the latter of the fixed 
nature of the total entropy. 

Constancy of the absolute temperture at different points of the system is not deduced in 
investigations of the isothermal stability, but is postulated a priori, hence the principle 
(of an absolute) minimum of the total free energy of the system F can be used instead of the 
Gibbs principle. Later, only this question will be considered (the insignificant additional 
difficulties associated with the presence of a constraint corresponding to the second relation- 
ship (1.6) in the case of a thermally insulated system can be taken into account as was done 
in the problem of thermodynamic inequalities /lo/). Also assuming the equilibrium state of 
each of the phases to be homogeneous, and the interphase boundary to be planar, we arrive at 
a formula for the second variation of the total free energy of the system in the neighbourhood 
of an equilibrium configuration /2/ 

where $\I,(ul]j, 6) is the dependence of the phase free energy density on the displacement 
gradients and absolute temperature 8 (which is a given parameter by virtue of the assumption). 

We find the extremal values of the second free energy variation 62F in the set of 
virtual fields u',c satisfying the first condition in (1.6) and the normalization condition 

G= ~'dwna'u~ = 1 (f.8) 
0 

In the stable equilibrium caseitis obviously necessary that these extremal values 
should be non-negative. The constraint (1.8) of isoperimetric type can be taken into account 
by the Lagrange multiplier method by going to an investigation of the absolute extremum of 
the functional II = &F + nG (n is an undetermined multiplier). The conditions that the 
first variation of the functional n should vanish reduces to satisfyingthefollowing 
relationships /2/ 

9 ‘jklsk~~j + nd=O within the phase. 

[$%k ( I] n, = c,,$ [#“I I X7 ([q%ld + Cla [q”ullk] nk)= 

[9 ‘f”‘Uilpakli]$nl on the interphase boundary 

(1.9) 

(1.10) 

System (1.9) and (1.10) is also supplemented by the first relationship from (1.6) and 
the appropriate conditions on the outer boundary. Values of the parameter n for which the 
mentioned linear homogeneous system has non-trivial solutions are called spectral. As was 
done in investigations of the thermodynamic inequalities /lo/, the following assertions can 
be proved (which are certainly valid even for inhomogeneous equilibrium states and the case 
of a thermally insulated system): a) the spectral values of n are real, b) the second 
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variation PF takes a value equal to n on a non-trivial real field a',~ belonging to the 
eigenvalue n and satisfying the normalization condition (1.8). Therefore, non-negativity of 
the spectral values of n is necessary for the isothermal stability of the system. 

We say that a coherent interphase boundary is locally stable at a certain point character- 
ized by local phase gradients u:,, if the appropriate eigenvalues n of the system formed 
by the first relationship of (1.6) as well as (1.9) and (1.10) corresponding to the eigen- 
functions that decay exponentially in the depth of the appropriate half-spaces and are oscil- 
latory in nature in the direction of the interphase boundary are non-negative. A study of the 
local stability of the interphase boundary that is similar to the study of equations with 
constant coefficients is substantially simpler than the stability analysis of the system as a 
whole and cannot ensure similar stability. At the same time, detection of the local boundary 
instability enables one to assess the instability of the system as a whole since the local 
boundary curvature and the inhomogeneity of the equilibrium configuration can be neglected 
for sufficiently short perturbations. Therefore, the same relation exists here as character- 
izes the relation between the thermodynamic stability of the material and the stability of a 
specific structure fabricated from it. 

2. Stability of equilibrium for coherent transitions in the case of a small 
natural transformation deformation. For brevity, we will assume that the phases in 
the reference configurations (see /ll, 12/) are not stressed while the system temperature 
corresponds to agreement between the free energy densities of the phases per unit mass. We 
assume the affine deformation connecting the phase reference configurations to be small 

u', =sA,$, Alj--* E<l (2.1) 

In such a situation it is natural to expect that equilibrium configurations are found 
that contain both phases separated by an interphase boundary, where the physical parameters 
of both phases will differ slightly from the references and are represented in combination 
with the equation of the boundary in the form of series in a small parameter 

(2.2) 

(here v' are phase displacement fields additional to w'). 
In the situation under consideration the coefficients of the spectral problem, described 

by the first relationship in (1.61, as well as (1.9) and (1.101, turn out to be functions of 
the small parameter E. Consequently, its solution can be sought in the form of series 

Substituting fZ.l)-(2.3) into the system, we reduce the spectral problemtothe following 
form in the lowest approximation in e: 

The functions Ilk* give the free energy density of the phases as a function ofthequantities 
VIIlf7 0; the bar here denotes that the value of the appropriate derivative is calculated for 
e = 0. 

3. Necessary equilibrium and stability conditions for phase transitions 
with slip. Examination of the isothermal equilibrium and stability of a simple thermoelastic 
system in which a phase transition with slip can occur can, in the absence of external force 
fields, be based on an investigation of the minimum of the total free energy 

In this case it is convenient to perform the description in Euler coordinates 2': Zii, z'j 
are metric tensors of the reference system used to realize juggling by the spatial indices of 
the reference system, and also covariant differentiation denoted by the symbol V,;Ui are 
Euler components of the particle displacement field, and p is the actual density of the sub- 
stance. Covariant differentiation with respect to the coordinates %a on the actual inter- 
phase boundary Z: is denoted by the symbol V, (juggling of the surface indices is also 
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realized later by using the metric tensor of the actual surface). 
Bearing in mind carrying out calculations to explicit algebraic relationships, we hence- 

forth confine ourselves to the case of isotropic non-linearly elastic simple phases. In this 
case the free energy density of the phases depends on the displacement gradients in a complex 
manner, and, depending on the convenience and purposes, can be considered as a function of 
the principal invariants IM, the principal elongations AM, the finite deformation tensor Ulj, 
the metric tensor of the initial configuration z,,O etc. by virtue of the geometric relation- 
ships 

(irrespective of the selection of the arguments to denote the free energy density, one letter 
will be used). 

Following /9/, we use the variation technique associated with the analysis of possible 
particle velocities j' and the actual boundary C that satisfy the local mass conservation 
condition on a singular surface 

C Ipl = Ipf?Ni (3.3) 
in the analysis of phase transitions with slip. 

HereNiare components of the unit normal to the actual boundary. 
Considering the phase free energy density as a function of the finite deformation tensor, 

following /9/ we reduce the first free energy variation to the form 

dr, [fi (Pi> -LP)IN~ (3.4) 

Here pji is the Cauchy stress tensor; the scalar D characterizes the slope of the phase 
equilibrium curve 

w pij = pZikZ$ - 1 
au(b, 

D=Ag_ 
[P ‘I 

From the condition that the first variation of the free energy should vanish, we arrive 
at the equilibrium equations /9/ 

V,P' = 0 within the phases 

pkjilzNj=DNi on the interphase boundary 
(3.5) 

The isothermal stability of a configuration with a plane interface and homogeneous phase 
stress and strain states in the equilibrium state will be studied later. Differentiating 
relationship (3.4) in the neighbourhood of such a configuration and using the equilibrium 
conditions (3.5), we arrive at a formula for the second variation of the free energy /2/ 

PF = ’ d62djk’vjj,vdk + 1 dZZF (2c [djkVaj,] - [dj'jkV,fil Nk) 

dj' =pji _ D# , @k~~_p_-$- mq z” ZR9Zti + Ilii 

(3.6) 

(3.7) 
miZqk _ pPzkl _ pjk,il 

In the derivation of the secondvariation 
rium state being investigated, the properties 
relationships: 

formula we used the homogeneity of the equilib- 
of the S/&%,-derivative and also the following 

4. Spectral problem to confirm the non-negativity of the second variation 
of the free energy. Following /2/, we consider the extremal values of the second free 
energy variation (3.6) in the set of kinematically allowable virtual particle velocities f’ 
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and the interphase boundary C satisfying the normalization condition 

Exactly as in the case of coherent transformations, the last question is reduced to an 
investigation of the unconditional minimum of the functional II * ==62F--G*, by varying which 
in the set of kinematically allowable fields (i.e., those that satisfy the condition (3.3)), 
we obtain 

l%I* zzz - 2 psfi (V,C”W,fk + npf) + 

s h dZ(2N,[C "'k'Vlfk8f,] -+ $+(2&T [djY,f*] - 

;d”8fkVafi] Nk + [dj’GfiVJk] Nk - 2 [d”Sfi] V,C)) 

,ybkl = G (pkL + ckliq 

(4.2) 

Separating the independent variations in (4,2), we arrive at the stationary conditions 

v,c'$k'v,fk*+ xpkf+i=O within the phases 
(4.3) 

N,C~h'fV,fkf + z;'" 
1 

[djkvmjkl +g N” - d*j’V,C - 

$d*jkN”v,fk* + -& d*J’Nkv,jkk}=O on the interphase boundary 

Exactly as in the case of the coherent transformations, it can be shown that: a) the 
spectral values m of the system (4.3) (with natural conditions on the outer boundary) are 
real; b) in a non-trivial real field f' belonging to the eigenvalue n and satisfying the 
normalization condition (4.11, the second free-energy variation (3.6) takes the value n. 
Therefore, for isothermal stability in phase transitions with slip, non-negativity of the 
spectral values of the system (4.3) is necessary. Here we do not determine the local stability 
of the boundary of a phase transition with slip, which is completely analogous to the case of 
coherent transformations. 

Using (3.7), system (4.3) can be rewritten in the following equivalent form: 

VjCyv,fr* + np* f*” = 0 

(@V,fk* - & [$Vkf$ji) N,= d,%pV,C 

(4.4) 

(4.5) 

5. Local stability of the phase boundary for transitions with slip in the 
case of a small natural transformation deformation. we henceforth assume that the 
difference between the isotropic phase densities ,in reference configurations is quite small 
while the relative elongations of the phase substances during the transition from the re- 
ference configuration into the equilibrium configuration whose stability is being investigated, 
are close to one 

p_O=p+O--&I?, AM-+ = 1 + eeM+ e=gl; eM*, 6-i (5.1) 

We will confine ourselves to the two-dimensional case by considering the components lJ&t3, 

fi” of the displacements and virtual velocities to be zero while the remaining components 

U&', U&2 and f*‘, f+’ are independent of z3. We denote the horizontal coordinate z' in 
terms of x and the vertical in terms of z = z2. We shall seek the solution of system (3.31, 
(4.4) and (4.5) in the form of the following series: 

Substituting (5.1) and (5.2) into the above-mentioned system and eliminating C by using 
(3.3), we arrive at relationships in the lowest approximation in E 



495 

0 within the phases 

on the interphase boundary 

(5.4) 

The following formulas for the non-zero components of the tensors C,"k' in the reference 
configurations are used here 

The relationships (3.2) are used here in deriving (5.5), the derivatives of the free- 
energy density with respect to the invariants in the reference configurations are here ident- 
ified with the Lame moduli with a computation such that equations of the classical linear 
theory of elasticity would be obtained on linearizing the exact non-linear equilibriumequations 
of an isotropic medium. 

The quantities h*” introduced intotheboundary conditions (5.4) characterize the degree 
to which the equilibrium states of the phases are not hydrostatic 

!~~~=lirn 
d*%+ -= 2P* (el* - es*) 

e-0 P+-P- eI_+ k+ VP+U- cl+ - et+ (5.6) 

L'Hopital's rule, as well as relationships (3.2), (3.5) and (5.1) should be used in 
obtaining (5.6). 

The solutions of (5.3) that oscillate in the x direction and decay exponentially deep 
in the upper (plus superscript) and lower (minus superscript) half-spaces have the form 

f&=(B,* exp(Tk&*z)+ B,* exp(+k&*z))exp(- ikx) 

f& = 2 (b*E,* exp FiA e *z) +B,*E,* exp (fk$,*z)) i exp (--ikr) 

El* = (1 - ~ol(a~,~k*))'% &* = (1 - n,/(a;*k*))‘l~ 

(5.7) 

where a11 +, a,+ are the velocities of the longitudinal and transverse volume waves within the 
appropriate half-spaces. 

Substituting soltuion (5.7) into the boundary conditions (5.4), we obtain a linear 
homogeneous system in B,,z+. From the condition that its discriminant vanish, we arrive at 
the following equation to determine the spectral value Q = n,,lk? 

I 
(2 - k+)* 51’5,’ - 2 - + - h+)“) I(2 + h_)’ $1-E,- - 

I+ 
(5.8) 

i 
2 - $- + h_ a + h+ah_a(l - fl+$,+) (1 - &-Es-) - 

I- )) 

2h+h_ 
I 
(2 - A+)&+$,+ - (2-&-h+)]x [(2+ h_)SiE,- (2-e + h_))=O 

where h* = h*“lp* are dimensionless parameters of non-hydrostaticity. 
For A* =0 Eq.(5.8) dissociates into two Rayleigh equations for surface waves in an 

isotropic half-space. As is well-known /13/, only positive real roots correspond to these 
equations. To find the neutral equilibrium equations , we should set Q = 0 in (5.8). Expanding 
the indeterminacy occuring here by the L'Hopital rule, we obtain 

A+'@+ + I)kT 1)-x) + k*{(x+- i)(x- + I)-xx-?- 
Bh_h+x+x_ - 4h+x+ (x_ - 1) + 4h_x_ (x, - 1) + 

4(x+-_)(x_-l)=O; ~*=a:&*:, x=al+/a",_ 

(5.9) 

Relationships (5.8) and (5.9) are simplified significantly in the case of incompressible 
phases (UII* = 00) when the principal forces in one of the phases (in the lower half-space, 
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say) agree: p ii = p 22 
(5.9) take the-form - 

(obviously h_ = 0 here). In the situation mentioned (5.8) and 

h+2=&, P--p 
.L+ 

The relationship for a critical non-hydrostatic deformation (5.11) agrees with that 
mentioned earlier /3/. 

Eq.(5.10) was solved on a computer. Represented in the 
figure are the dependences of the roots $ on the dimension- 
less non-hydrostatic deformation h, for three values of the 
parameter x (when the "instantaneous kinetics" conditions 
are satisfied on the interphase boundary when equilibrium 
succeeds in being established on it during motion in con- 
formity with the second group of conditions (3.5), these 
roots can be interpreted as the ratio of the square of the 
surface wave velocity to the square of the transverse volume 
wave velocity in the "plus" phase). It is seen that the inter- 
phase boundary becomes unstable for sufficiently high non- 
hydrostatic deformations in this phase. The threshold value 
of the non-hydrostatic deformation tends to zero as the shear 

modulus tends to zero in the "minus" phase, which is in complete agreement with the instability 
detected in /3/ in a non-hydrostatically stressed solid-melt system (as is manifest for 
arbitrarily small non-hydrostatic stresses). 
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